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Abstract. The effects of the restoration of Galilei invariance on many-nucleon states with one nucleon in
the continuum are investigated within a simple knock-out model for quasi-elastic electron scattering using
a Woods-Saxon partial-wave expansion for the continuum nucleon and simple Slater determinants for the
bound states. For the total longitudinal response functions of the three nuclei *He, 0 and °Ca, as seen in
inclusive experiments, a rather good agreement of the Galilei-invariant prescription and the usual spectral-
function approximation is obtained, provided that in the latter the momentum transfer is quenched by
a factor (A —1)/A, and furthermore relative motion wave functions are used for the various hole states.
The agreement is worse if exclusive scattering is considered. Then the above modifications of the spectral-
function approximation still yield the right positions and shapes for the partial longitudinal response
functions of the various residual hole states. However, as expected from the different spectroscopic factors
obtained for the Galilei invariant with respect to the normal approximation in the first of the present series
of papers, for holes out of the last occupied shell the corrected spectral-function approach underestimates
the Galilei-invariant strengths, while for holes from the lower shells a considerable overestimation of the

strengths is observed.

PACS. 21.60.-n Nuclear-structure models and methods

1 Introduction

Galilei invariance requires that the effective Hamilto-
nian describing an A-nucleon system in its center-of-
momentum (COM) rest frame does neither depend on
the center-of-mass coordinate nor on the total linear
momentum of the constituents. The nuclear many-body
problem is hence to solve the corresponding A-nucleon
Schroedinger equation for wave functions depending only
on relative coordinates, too. But nucleons are fermions
and thus their wave function has to be antisymmetric.
The relative coordinates, however, depend on all the nu-
cleon coordinates and thus the antisymmetrisation has
to be done explicitly. For few-body systems this is no
problem and consequently the text-book description of
the deuteron, the Fadeev equations for the three-, or the
Fadeev-Jakubowski equations for the four-body system
use this procedure. For eight or even more like nucleons,
on the other hand, this procedure becomes impractical.
Thus, in the nuclear many-body problem one usually ex-
pands the wave function in terms of Slater or general-
ized Slater determinants. In this way the Pauli principle
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is respected explicitly, however, depending on 3A instead
of the allowed (34 — 3) coordinates, such wave functions
massively break the Galilei invariance.

In the first three of the present series of papers [1-3]
it was demonstrated how the Galilei invariance of bound
many-nucleon states can be restored by applying the pro-
jection operator

Ca(0) = /ngﬁA(a) - /d3d’exp{i&°~13,4}, (1.1)
where
) A
Py=> pi, (1.2)
=1

is the total linear momentum operator of the considered
A-nucleon system.

This operator projects into the center-of-momentum
(COM) rest frame of the considered A-nucleon system by
superposing the states obtained by shifting the wave func-
tion to all points in ordinary space with equal weight. Ob-
viously, the convergence of this procedure requires that
the wave function is localized. Thus the restoration of
translational invariance (or full Galilei invariance, if the
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projection is done before the wave function is dynami-
cally determined, e.g., by variation) via the operator (1.1)
is only possible for bound states.

Simple examples for such bound states (the oscillator
ground states of *He, 10 and 4°Ca as well as all the one-
hole states with respect to these reference configurations)
have been studied extensively in [1-3]. Spectral functions
and spectroscopic factors [1], form factors for elastic and
inelastic electron scattering between bound states [2], sum
rules [2], and finally energies obtained for effective interac-
tions without and with density-dependence [3] have been
investigated. In contradiction to the general belief, in most
of these examples the exact restoration of Galilei invari-
ance produced results which were considerably different
from those obtained by the usual approximate methods
to treat the COM motion.

In the present paper the investigation will be extended
to simple scattering states with one nucleon in the contin-
uum. The corresponding wave function is not localized any
more but oscillating at infinity. Thus, for the treatment of
continuum problems, the use of (1.1) alone is not suffi-
cient. As will be shown in the following, the restoration of
Galilei invariance is nevertheless straightforward and can
be achieved using exactly the same mathematical methods
developed in [1].

In conventional nuclear physics one usually does not
care about Galilei invariance and expands an A-nucleon
scattering state with one nucleon in the continuum in
terms of partial channels of the form

|Ca(E);ATz :Tza + 7 [ljala]IcMc> =

1
> <l§j|/\am> (jIoIc|mM,M,)

Aom M,

| dkk?{ Jaovi@oel o5 IaMa>} 921,(k)
(1.3)

in which a partial wave with quantum numbers 71j is cou-
pled to some bound state « of the (A — 1)-nucleon system.
The operator

¢t 10) = [F)lro)

TO

(1.4)

creates a plane-wave nucleon with momentum hk and
isospin- and spin-projections 7 and ¢ from the particle
vacuum. Expression (1.3) is the momentum representa-
tion of the channel. The expansion coefficients g2, (k)
can be obtained by either a potential scattering approach
(e.g., Woods-Saxon partial waves) or, more microscopic,
by some coupled-channel calculation using some suitable
many-body Hamiltonian. The first case will be studied in
the present paper, the second in the next of the present
series of papers. If in the potential scattering approach
the same potential is used to create bound and scattering
single-particle states, then the channels (1.3) are orthog-
onal to all the bound states of the A-nucleon system.
Obviously, an expansion in the channels (1.3) is not
Galilei invariant. First of all, the bound states « of the
residual nucleus do not live in their COM rest frame, but
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are usually, as already mentioned, a linear combination of
Slater or generalized Slater determinants which massively

break this symmetry. Thus, instead of |W§Ex ; InM,,) the
projected states

aT™
w575 I M. (0) =
Cacr ()55 5 InM.,)
aTo A aTo
VT 1aMa|Ca )25 1,M,)

(1.5)

should be used for the description of the residual nucleus.

Second, an expansion in terms of (1.3) does not yield
the desired asymptotic behaviour. In fact, asymptotically
the system should be described by a relative motion wave
function for the outgoing (or incoming) nucleon with re-
spect to the residual nucleus, while in (1.3) not relative
but normal coordinates are used. In other words, in (1.3)
the “recoil” of the A — 1 system is neglected.

A Galilei-invariant description thus requires an Ansatz
of the form

|Ca(E); AT, =T + 715 [1j, Io)I.M.; (0)) =

1
> <l2j|)\am> (jIod.|mMyM,) -
Aom M,

/ dka{ [aavii@d
exp{—ik - Ba WSS 5 Mo <0>>}gfﬂj<k), (1.6)

which now yields the desired asymptotics. The price one
has to pay is the occurence of the (A — 1)-body recoil

operator exp{—iE-éA_l} as well as of the COM-projected
state (1.4) in this Ansatz.

It should be stressed here that in general neither the
configurations occuring in (1.3) nor those in (1.6) are or-
thogonal. For the potential scattering approach discussed
in the present paper, however, the effects of these non-
orthogonalities are small and can hence be neglected.
This is not the case if the expansion coefficients in (1.3)
and (1.6) are determined in a coupled-channel approach.
There a careful orthonormalisation of the channels is un-
avoidable.

In the present paper we shall investigate the difference
of the Galilei-invariant Ansatz (1.6) with respect to the
conventional form (1.3) for the example of quasi-elastic
electron scattering from the three nuclei “He, %0 and
40Ca. The expansion coefficients will be taken from poten-
tial scattering using a Woods-Saxon potential. The above-
mentioned non-orthogonality effects will be neglected and,
for simplicity, only the longitudinal response functions will
be studied.

In the next of the present series of papers we shall
then study a more microscopic coupled-channel approach
to the problem. There both longitudinal and transverse
response functions will be calculated and the channels will
be properly orthonormalized.
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2 A simple knock-out model

As an example for the effects obtained if instead of the
normal description (1.3) the Galilei-invariant Ansatz (1.6)
is used, we shall discuss in the following the longitudinal
reponse function for inelastic electron scattering in a sim-
ple knock-out model for the three target nuclei “He, 160
and 1°Ca.

In the conventional (“normal”) approach the ground
states of these nuclei will be described by simple oscillator
Slater determinants

= [ ok 10).

Hh

(2.1)

where the operator
bll0) = [H)|h)

creates from the particle vacuum a nucleon with isospin-
and spin-projections h = 7, o, in an oscillator state
with quantum numbers H = ng,ngyny. in Cartesian
or H = nyly Ay in spherical representation, respectively.
The states of the residual nucleus will be described by the
one-hole states with respect to (2.1)

(2.2)

|¢X—1; IaMa> = 5QH5]ajH(5Ma7mH (_)jH*mH

: Z (lH%jHMHahmH) bunl ) (2.3)

AHOR

and for the continuum nucleon Woods-Saxon partial waves
will be used. The Woods-Saxon potential has the form

Uo
1+ exp{(r — Ro)/ao}

Uls eXP{(T - Rls)/als}
m2asr [1 4 exp{(r — Ris)/ais}]?

y l, forj=1+1/2
—(l+1),

forj=1-1/2
+6,p€*(Z — 1)

Vi,(r) =

forr > R¢
forr < R¢

{l/r
(1/2Rc)[3 — (r/Rc)?],
(2.4)

where m, is the mass of the pion and the radii are
parametrized as usual by

Ry = 1o (A—=1)Y/3

(2.5)
for « = 0,ls,C. Note, that the corresponding Schroe-
dinger equation describes the relative motion of one nu-
cleon in the field of the other A — 1 nucleons and that
hence the reduced mass of the problem has to be used in
the kinetic-energy operator.

Obviously, in principle one should use the bound solu-
tions of the potential (2.4) instead of harmonic-oscillator
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states to construct the target ground state (2.1) and the
states of the residual system (2.3). It turns out, however,
that after optimizing the oscillator length so that the sum
of the overlaps of the oscillator states occupied in (2.1)
with the corresponding Woods-Saxon solutions becomes
maximal, (2.1) and (2.3) are excellent approximations to
the corresponding Woods-Saxon determinants. We shall
hence keep the oscillator representation of (2.1) and (2.3)
which allows for an analytic evaluation of the various
matrix elements discussed in the following and thus for
greater transparency.

For the longitudinal response functions the matrix el-
ements of the charge density operator between the target
state (2.1) and the channels (1.3) have to be calculated.
This operator can be written in momentum representation
as [2]

grio1’

Z/dgleETltfl E
(2.6)

where the nucleon charge form factors f; as usual are given
by

PG w) =) [ (Q
T1

Q> GR(@*) + 1 (Q%)

8M?

4M2

(@) = GR(@Q*) — )
+ m

(2.7)
with the Sachs form factors parametrized in the widely
used dipole form (see, e.g., Preston and Bhaduri [4])

2 Q2 -2
Q) = [”m} |
@) = weap@) v (= 2]
Q* 1
(@) = Go(@). (2.8)
P 4M2 1+ 5. 64M2 E

They depend on the (negative) square of the 4-momentum
transfer

Q* = (heq)* — (AB)?,

with AE = w being the energy transfer to the system.
In our simple knock-out model we obtain easily

{ |b},hc,;pﬁ““| ) =

{fT + Z k|H1 ‘thpnorwa‘ >}

(2.10)
with App = 67,7, 00,0, -

The first term is immediately recognized as the com-
plex conjugate of the usual spectral function discussed al-
ready in [1]. For the simple ground state (2.1) one obtains
the Fourier transform of the considered hole state at mo-
mentum k — ¢ multiplied with the charge form factor (2.7)
of the nucleon. The corresponding spectroscopic factors
equal unity for all the hole states.

(2.9)
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The second term in (2.10) contains the scattering
between the various hole states. The corresponding form
factors have been derived in [2]. Each of the terms in the
sum is multiplied by the Fourier transform of the hole

state H; at momentum k. If the partial waves entering
the channels (1.3) were constructed from the same
average potential as the bound states (2.2), then, because
of orthogonality, the second term would not contribute
at all and we are left with the spectral-function part.
This “spectral-function approximation” is usually called
the “distorted-wave impulse approximation (DWTA)”.
Since the outgoing nucleon feels the mean field of the
other nucleons, one sometimes may argue that the DWIA
takes into account (at least some of) the “final-state
interaction” (FSI). It should, however, be stressed that
the simple knock-out model presented here except for the
“mean-field” contribution does not include any nucleon-
nucleon correlations at all and is hence a rather simple
independent particle model. Note furthermore that we do
not use Woods-Saxon but oscillator wave functions for
the bound states. Thus the above statement about the
orthogonality is only approximately true. However, we
shall see that this causes only very small deviations from
the spectral-function approximation.

The expression (2.10) can be evaluated easily using the
standard techniques presented in [1]. One obtains

b \3/2
T ANOT _
(WhnCe, 1) = (=)

2 )\2 N .
xAph{exp {“ ; +E~>\} (7~ %m)

(2.11)

where 7 = 7, = 7y, b is the oscillator length, ¥ = bk and
A = bq. (@|H) are the polynomial parts of the oscillator
states |H) in (dimensionless) momentum representation.
For the three nuclei considered here they are given in [1]
as well as the functions

y(Z, 1) = Y (H)(H|7).

H

(2.12)

For the Galilei-invariant channels (1.6) now instead
of (2.1) the COM-projected ground state

A 3/4
o) = a0 (5 ) (2.13)

has to be used and for the residual nucleus the states (2.3)
have to be replaced by the corresponding COM-projected
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one-hole states (angular-momentum coupling supressed
for simplicity). As derived in [1] these are

A 1)\3/4
47h? )

(HR)™, (0)) = Cacr(0)bsanl) <

1, for H =0sin*He

1, for H=0p\in 0

\/g, for H = 0s in 160

1, for H=1sin%Ca

, (2.14)

1, for H =0d\in4°Ca

% , for H = Op\ in 4°Ca

while for the (with respect to the 1s hole) Gram-Schmidt
orthogonalized 05 hole in 4°Ca

1(05,h)™1, (0)) = Ca_1(0)

1014 1 A—1\%4
X <b0$0h|> 910 +b1s0h>m> (W) (2.15)

has to be taken.

Furthermore, instead of the normal charge density op-
erator (2.6) now the translational invariant form

~inv ~nor

PAY(q, w) = Py (2.16)

(¢, w) exp{—iq- Ra}

has to be applied, in which the so-called Gartenhaus-
Schwartz operator exp{—iq - EA} ensures that all coor-
dinates are measured with respect to the center-of-mass
coordinate R4 so that in (2.16) only relative coordinates
do occur.

Using the techniques developed in [1], the Galilei-
invariant form of the matrix element (2.11) can then be
written as

((HR)™", (0)] exp{ik - Ra-1}

3/2

_A

ANOT 5] A-1

Xegy P expl=iq - Rall, (0) = | — =
1 A , 1A-1, _ -
xAph{exp[—iA_lfi ~37 2 A +I€->\:|
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1 o -1 o
‘frm/dBy eXP{—yz}THW;n )

pep | LA e 1(A-DHL
I T A
A-1, 1 <

AN T AT 'A}

L 37 _QL 3 = 2
7T\/%/duexp[u]7r\/7_r/dwexp[w]

-

2fr + f-r)2(By, B)ru(B,, B)

G Bl m] } . (217

with the normalisation factors ny given by eq. (2.14) for
the one-hole states listed there, while for the 05 hole in
40Ca the linear combination (2.15) of (2.17) for H = 0s
and H = 1s has to be taken. By definition, in (2.17)

TENT Y

7, = %gwﬂ%(g—%x),
E;E A2_1{[+Z\/§%<Fi+ix>,
B = —ivV2d + X,

5, = —ivV2d — —=X, (2.18)

=@
N
If

and the functions x and rg are polynomials in their argu-
ments. They have been given for the three nuclei consid-
ered here explicitly in [1].

Again we can identify the first term as the projected
spectral-function term discussed already in [1]. It can be
written in shorthand notation

fT(QQ) <E_ %il(H)rel> \/ S%ro

(2.19)

as the product of the nucleon charge form factor (2.7), the
Fourier transform of the relative oscillator state |(H)yel)

at momentum k — (A — 1)7/A and the square root of the
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corresponding spectroscopic factor
1, for H=0sin*He
%, for H = 0s in 160
%, for H = Op in 160
Spre = ¢ 40 for H = 05 in *°Ca (2.20)
%ég? , for H=0pin“Ca
%gg? , for H=1sin*Ca
1?8(1) , for H=0din *°Ca

as derived in [1]. The values in (2.20) are identical to
those derived by Dieperink and de Forest [5] using differ-
ent methods than applied here. The “relative” oscillator
state can be obtained from the usual one by simply re-
placing the mass of the nucleon by the reduced mass of
the 1 plus (A — 1) nucleon problem, or, equivalent, by
modifying the oscillator length b into

(2.21)

Note, that in (2.19) the momentum k — (A — 1)7/A, and

not k — ¢ as in the normal description (2.11), is occuring.
If we introduce

E=0bk,

_:E

q_ A q)

N A-1

A=bg = /=, (2.22)

then in these new variables the projected spectral-function
part (2.19) gets the same functional form as the normal
expression in (2.11) except that the spectroscopic factors
are not equal to unity but given by (2.20).

The second term in (2.17) looks again rather similar to
the second term in (2.11); however, here the orthogonal-
ity argument does not hold even if bound and scattering
states are constructed from the same potential. This is
due to the fact that the relative momentum k& of the out-
going nucleon is modified if commuting the corresponding
plane-wave annihilator with the Gartenhaus-Schwartz op-
erator. Thus, the second term does always contribute here,
though, as we shall see in the next chapter, its contribu-
tions are again rather small.

If we take only the spectral-function part of (2.11)
into account but make the above modifications (2.21)
and (2.22) we refer to this as the “corrected” spectral-
function approximation. It differs from the full Galilei-
invariant result (2.17) by the absence of the second term
and by replacing the square roots of the spectroscopic fac-
tors (2.20) all by ones. Comparing the corrected spectral-
function approximation with the Galilei-invariant result
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thus gives an idea on the importance of the second term
in (2.17) as well as of the effects of the spectroscopic fac-
tors (2.20).

We proceed by evaluating (2.11) and (2.17) using the
Cartesian representation of by, and then transforming the
hole states into the spherical basis using the unitary tran-
formations given in [1]. Then the integration over df2; is
performed in order to pick out a particular partial wave
for the continuum nucleon. Afterwards we do the neces-
sary angular-momentum coupling.

We furthermore choose, as usual, the direction of the
momentum transfer ¢ along the z-axis and define the en-
ergy loss of the electron as

w =€+ FEy — Fy+ Epec, (2.23)
where € is the (relative) kinetic energy of the outgoing
nucleon, Fy — Ej the threshold for removing a continuum
nucleon from the A-nucleon ground state and leaving the
residual nucleus in the state H, and

(he)*q?

FEree =
ee 2AMc?

(2.24)

is the recoil energy of the system.

Taking finally into account that the plane-wave states
are normalized to a three-dimensional Dirac delta-function
in the wave vectors, while the Woods-Saxon partial waves
are normalized to a delta-function in the energies, we ob-
tain for the normal channels (1.3)

(Cr(w) [, nulujalIM| | ) =

Sago (—i)2r hwio 7;;0
. / dkk? FRoT (k) gl (), (2.25)

where (he)2 A 1
hwy = M A1’ (2.26)

while for the Galilei-invariant channels (1.6) one gets

(Cr(w); [l nalujr)IM; (0)] p™]) =

4 2¢
6 s 2ng+lyg -
MO( Z) h@o Wﬁ@o
[k ) g (), (22)
where now
b2
h@() = h(x](] 5—2 . (228)

Note that even in the “normal” expression (2.26) here
the reduced mass enters, since the Woods-Saxon differ-
ential equation describes the relative motion of a nucleon
with respect to the (A — 1)-nucleon system. Obviously,
for the corrected spectral-function approach (2.28) instead
of (2.26) has to be used in eq. (2.25).
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Now the target ground state is localized. Hence, in all
matrix elements occuring in (2.25) and (2.27) the partial
waves will give a non-vanishing contribution only within
a finite interval in ordinary space, say 0 < r < R. In this
finite interval we can expand the regular solution of the
Woods-Saxon differential equation for each energy e and
partial wave 7lj in terms of Bessel functions at a finite
(equidistant) grid of momenta. We write

N

= Z Ju(kir) gi(etly) .

i=1

v (r)

. (2.29)

Integration over the radial coordinate in the chosen finite
interval yields then

N R
slerti) = - (47),, [ drriilhr) ez (), (230)
Jj=1 0
where the inverse of the matrix
R
(M), = /drr2jl(kir)jl(kjr) (2.31)
0

is needed because in the chosen finite interval the integra-
tion does not yield a Dirac delta-function in the momenta.
The integrals in (2.25) and (2.27) can now be replaced by
finite sums

N

[k B g2 ) = 3 Pk iterts).

i=1

(2.32)

Finally, the longitudinal response functions are given by

>

Ry (w, q) = (Cr(w) [lG, nalaialT0] ™| )
(2.33)
in the normal approach and

R, q)= Y UCr(w); [lj, nalujm10; (0)] 5™ )
Tljnpglgjuml
(2.34)
in the Galilei-invariant approach, respectively. If only a
particular hole state is to be considered, obviously the
summation over ngylgjy and 7 in these expressions has
to be skipped.
Left to be evaluated are now the form factor functions
F occuring in (2.25) and (2.27), respectively. For the H =
0s holes in *He we obtain in the normal approximation

nor, 7

F[lj7081/2]10(k7q) = 61l(_)l+j_1/2 2(2j + 1)

2 2
. (g%l% — %0) {exp {—H ;)\ ] Ji(EA) fr

K}2 2
+d10 €xp [__ - /\_] (2[f'r + ff'r] - f'r)} , (2.35)

2 4
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while the Galilei-invariant result is angular momenta of the occupied s- and p-states. Fur-
bro, l4j—1/2 . thermore, as compared to the normal expression (2.37) in
(15,081 /2] j10(F:a) = dn(=) 2(2j + 1) the Galilei-invariant result (2.38) the square root of the
R2 |2 spectroscopic factor (2.20) occurs as an overall factor.
(] = l|— - 50) {exp [—H —; } Ji(RN) f For the Op holes in '°O the normal result is
k210 A2 . Flijops, 110k @) = S (=) 712
toer|ty gy
- - R | 2
X V(2jm +1)(25 + 1) Jinlls = 50) -4/3
QU+ [ 1) ( . ) } (2.36)

. {exp [— " ; )\2} [kJr(KA) — AT (EN)] fr

In these expressions J;(x) are the so-called modified

spherical Bessel functions of the first kind which are usu- K2 )2 A2
ally denoted by \/m/2/x I;1/5(x). Note that the second + exp {—7 - Z] 8[fr + f-+] [1 - g} K010
term of (2.35) contributes only for angular momentum

second term contributes for arbitrary angular momenta.
For the H = 0s holes in O the normal prescription
yields

Fytoa aro(ksa) = on(=)H72/2(2j + 1)

I = 0, while in the Galilei-invariant expression (2.36) the
l

1 1
K(S]O — 6/{)\2 (sll — 5)\(510>‘| } s (239)

while Galilei invariance requires

Flom ok, @) = 0naa (=) 9712

(13,0p, ;110
1.1 1 K2+ N2 "
i ls - —0> {exp {— } Ji(KA) fr , . o1 16 [2
( 22 2 2 V(2 +1)(25 +1) (]JHI|§—§0>‘ T V3
K2 A2 A2 5
—— = 1= = R2+ A2 <
+ exp[ 5 4] 8[fr + f-] [ g ] d10 .{exp _k ‘; ] [RJr(RX) — AJi(RN)] f-
1 _

— fr (6[0 + —KA511>1 } , (237) _R_Q B 226 /\2 NI _372

while respecting Galilei-invariance one obtains [ m\ 1_ m\

ro, T j— - 1 1

EPeT o(hg) = Sn(=)T712/227 +1) 5/ %0 g

A 7 R
11 1 4 R2 4 A2 - f<KJI<“)+—A[1+—A2] ( )
. <]§l|§ _ 50) . \/;{exp {_ 5 } Ji(RN) fr 15 157 105 75
) 8 [ 1 R I+1 A
SIf, + /] “i5 e () e l+1(—5)])]}

2 225 4
(2.40)
2 o RA
' {1 N ﬁ)‘ } ( [1 T ﬁA } Ji (ﬁ) which again has the square root of the spectroscopic factor
- - from (2.20) as overall factor.

4 - l J RA [+1 J RA Finally we come to the case of °Ca. For the H = 0s

T 15 A+17%1\ 15 holes one obtains in the conventional approach
2., 16 ] (& Front (kg = dn(—) V2 /325 4 1)

_ el A (17,081 ,2)10\F>

fT({HfmA 10125A]J(15 " /1 o .y

— K Jr

64 - 1o, l ) <Jl| - 0) [ 5 ] Ji(RA) £+
——RA|l—=XN| | =—Ji1 | —

45 30 2041 15

B H2 )\2 /\2 )\4

l+1 ) + exp {————} [QO[fT—l-f_T] [1———!——} 410

+2H1Jl+1(15>DH. (2.38) 2 4 1780
A2 Kg2A2 KA K2\2
Again, in the projected expression (2.38) the second —frl |1+ —F—| %0+ - dn+—d2 )
. . 4 6 3 15
term contributes for all angular momenta, while the sec-
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respectively.

Before starting with the numerical evaluation it is
worthwhile to discuss the general structure of these re-
sults for a moment. First of all, the projected form factor
functions differ by an overall factor, the square root of
the spectroscopic factor, from the normal expressions. Be-
cause of (2.20) this means that the contributions of the
holes in the last occupied shell will be enhanced those of
the holes out of the lower shells quenched with respect
to the normal results. Furthermore, in the projected ex-
pressions the momentum transfer is reduced by a factor
(A — 1)/A with respect to the normal approach, while
the wave vector of the outgoing nucleon is enhanced thus
causing a faster fall-off of the projected matrix elements
with transferred energy. Together this has the effect that
the projected response functions will be peaked at smaller
energy losses than the normal ones. Finally, as already
mentioned, out of orthogonality reasons the second term
in (2.10) will give only a very small contribution even
though oscillator instead of Woods-Saxon wave functions
are used for the bound states. For the second term of the
projected approach this is not a priori true. Here, as can
be seen from the form factor formulas, partial waves with
arbitrary angular momenta and not only with the angular
momenta of the bound states do contribute. The compari-
son with the above-mentioned corrected spectral-function
approximation will, however, demonstrate, that even in
the projected approach the effects of the second term (and
hence the non-orthogonality effects, too) are almost neg-
ligible.

3 Results and discussion

Equations (2.33) and (2.34) have been evaluated for a total
3-momentum transfer of 500 MeV /¢ for the three nuclei
4He, 190 and *°Ca. For the nucleon form factors (2.7) in all
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Fig. 1. The longitudinal response of *He to inelastic electron
scattering at the 3-momentum transfer ¢ = 500 MeV/c. The
experimental data have been taken from Bates [6]. Open circles
give the “normal” result (2.33), while full circles refer to the
Galilei-invariant version (2.34) of our simple knock-out model.
Finally, crossed circles stand for the spectral-function part of
the normal description “corrected” by quenching the momen-
tum transfer with a factor (A — 1)/A and using relative hole
wave functions according to egs. (2.21) and (2.22).

three cases the standard dipole parametrisation (2.8) has
been taken. Furthermore, the calculations were repeated
for f, = 1 and f, = 0 in eq. (2.7). This allows a com-
parison with the mathematical sum rules discussed in [2].
The quasi-elastic limit (i.e. large ¢) yielded there Z for the
Coulomb sum rule in both the projected as well as the nor-
mal approach. For the most probable energy loss (essen-
tially the first moment of the longitudinal response func-
tion) the COM-projected approach gave ¢?/2My, while in
the normal description this value has to be multiplied with
(1+1/A). Finally the widths of the longitudinal response
functions (essentially the second moment) were propor-
tional to the ground-state expectation value of the pro-
jected or normal kinetic energy, respectively.

Let us start with “He. Here the Woods-Saxon pa-
rameters have been the following: the depth of the po-
tential (2.4) was Uy = —57.23 MeV, the spin-orbit

term U;;, = —5.00 MeV, and for the surface thickness
ag = a;s = 0.2 fm have been taken. Furthermore, for
the parametrisation (2.5) of the radii 1o = 1y = r¢ =

1.38672 fm has been used. The optimisation of the oscil-
lator length in order to get maximal overlap between the
Woods-Saxon and the oscillator Os bound state yielded
here b = 1.41613 fm. The expansion (2.30) of the Woods-
Saxon partial waves in terms of plane waves was performed
with a cut-off R = 10 fm.

The results are displayed in fig. 1. The open circles
refer to the normal approximation (2.33), the full ones
to the Galilei-invariant result (2.34). Crossed open circles
indicate the “corrected” result if for the normal approach
only the spectral-function part is taken, however, modified
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by egs. (2.21-2.22), i.e., the momentum transfer has been
quenched by A — 1/A = 3/4 and instead of the bare
nucleon mass the reduced mass 4My /3 has been used.
Furthermore, the experimental data from the Bates accel-
erator [6] are presented.

First of all, due to the restoration of Galilei invariance
a tremendous shift of the peak position to lower-energy
loss is observed. The maximum of the response function
is shifted from 205.4 MeV to 126.8 MeV. In fact, without
nuclear form factors, we obtain in the normal approxima-
tion for the Coulomb sum rule 1.995, for the most proba-
ble energy loss @ = 211.0 MeV and for the width of the
distribution 70.5 MeV. On the other hand, the Galilei-
invariant description yields 1.974 for the Coulomb sum
rule, 136.6 MeV for @ and only 45.9 MeV for the width.
For the chosen momentum transfer ¢/2My = 133.1
MeV. Thus, the projected result is already rather near
to the quasi-elastic limit. It is interesting to note that
133.1(1 4+ 1/4 + 1/3) = 211. The 1/A factor was to be
expected from the discussion of sum rules in the closure
approximation in [2], the additional 1/(A—1) comes from
the neglection of the recoil in the normal description of
the scattering states.

Second, one observes that the experimental data are al-
most right in the middle between the normal and the pro-
jected response functions. Thus, if one makes some kind
of “recoil correction” in the normal approach but neglects
the projection into the COM rest frame, one can repro-
duce the right position of the experimental peak (see, e.g.,
ref. [7]). This, however, is by chance. As we shall demon-
strate in the next of the present series of papers, the dif-
ference of the Galilei-invariant uncorrelated result in fig. 1
and the experimental data can be accounted for entirely
by conventional nucleon-nucleon correlations.

Last but not least, it can be seen from the figure that
the corrected spectral-function approach is here an ex-
cellent approximation to the full COM-projected result.
Thus the additional terms in (2.38) give indeed only a
rather small contribution.

For 60 and 4°Ca we took as Woods-Saxon parame-

ters for protons and neutrons ag = a;s = 0.53 fm and
ro = rs = 1.209 fm. For the protons Uy = —55.81
MeV, U;;, = —6.675 MeV, and r¢ = 1.25 fm, while for

the neutrons Uy = —55.50 MeV and U;;, = —6.675 MeV.
The upper limit for the expansion interval was here always
R = 14 fm. For the optimized oscillator length parameter
we obtained b = 1.7 fm and b = 1.818 fm for 0 and
40Ca, respectively.

Let us first discuss the case of '60. Using no form
factors, we obtain in the normal approach 7.894 for the
Coulomb sum rule, 157.4 MeV for the most probable en-
ergy loss and 56.4 MeV for the width, while the Galilei-
invariant approach yields 7.888, 141.9 MeV and 51.9 MeV,
respectively. As compared to the *He result we are here
still further away from the quasi-elastic limit. This is also
seen from the fact that 133.1(14+1/16+1/15) is only 150.3.

The results obtained with the standard parametrisa-
tion (2.8) of the nucleon form factors (2.7) are displayed in
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Fig. 2. Same as in fig. 1 but for the nucleus '°0O. Here no
experimental data are available.
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Fig. 3. The longitudinal response of *°O to inelastic electron
scattering at the 3-momentum transfer ¢ = 500 MeV/c out
of fig. 2 is decomposed into the various contributions from the
different proton-hole states (the contributions of the neutron-
hole states are almost negligible). Again open symbols refer
to the “normal”, full symbols to the “projected” and crossed
symbols to the “corrected” results.

figs. 2 and 3, respectively. Figure 2 shows the total longi-
tudinal reponse of °O as observed in inclusive scattering.
Again the normal prescription, the full Galilei-invariant
result and the corrected spectral-function approach are
compared with each other. Also here due to the restora-
tion of Galilei invariance a shift of the peak position to
lower energy loss is observed though here as expected from
the larger nucleon number the maximum is shifted only
by 18.9 MeV from 167.4 MeV to 148.5 MeV. Again, the
corrected spectral-function approach yields an excellent
reproduction of the full Galilei-invariant result.

Figure 3 shows the decomposition of the total longitu-
dinal response functions into the contributions from the
various residual hole states. Since the contributions from
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Fig. 4. Same as in fig. 1 but for the nucleus *°Ca. Again no
experimental data are available.

the neutron hole states are rather small, only the pro-
ton hole states have been considered here. It is clearly
seen that for this partial response functions the corrected
spectral-function approximation yields still the correct
peak positions and shapes of the full Galilei-invariant re-
sponse functions; however, the total strengths are not cor-
rectly reproduced. This is to be expected from the spec-
troscopic factors entering the squares of the form factor
functions presented in chapter 2. Consequently the cor-
rected spectral-function approximation overestimates the
strength of the 0s hole, while it underestimates that of
the Op holes. Since for both normal and projected spec-
troscopic factor the same sum rule holds, this effect is not
seen in the total longitudinal response functions displayed
in fig. 2 but is clearly present in the exclusive functions
shown in fig. 3.

Similar features are obtained for “°Ca. Here, as ex-
pected from the larger mass number, the shift in the max-
imum from the normal (137.7 MeV) to the projected de-
scription (133.8 MeV) amounts only to 4 MeV as can be
seen from fig. 4. Without nucleon form factor we get here
in the normal approximation 19.55 for the Coulomb sum
rule, 140.1 MeV for the most probable energy loss and
57.8 MeV for the width, while with projection the corre-
sponding numbers are 19.59, 133.8 MeV and 56.2 MeV,
respectively. Here 133.1(1 + 1/40 + 1/39) is 139.8 and we
are in the simple knock-out model quite near to the quasi-
elastic limit. Again the Galilei-invariant total longitudinal
response function is reproduced very well by the corrected
spectral-function approximation.

However, as already in 60, differences are seen if par-
ticular hole states are considered. Again, there is an over-
estimation of the strengths of the deep-lying hole states
(0s and Op holes, displayed in fig. 5), while for the holes
out of the last occupied 1s0d-shell (fig. 6) the corrected
spectral-function approach underestimates the strengths
as expected from the spectroscopic factors (2.20).
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Fig. 5. The longitudinal response of *°Ca to inelastic electron
scattering at the 3-momentum transfer ¢ = 500 MeV/c out
of fig. 4 is decomposed into the various contributions from the
0s and Op proton-hole states (the contributions of the neutron-
hole states are almost negligible). As before, open symbols refer
to the “normal”, full symbols to the “projected” and crossed
symbols to the “corrected” results.
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Fig. 6. Same as in fig. 5 but for the proton-hole states from
the 1s0d-shell. The nomenclature is the same as in the previous
figures.

4 Conclusions

In the present paper we have analysed the effects of the
restoration of Galilei invariance for many-nucleon states
with one nucleon in the continuum using as example the
longitudinal response function obtained for quasi-elastic
electron scattering from “He, 10 and °Ca within a sim-
ple knock-out model.

For this purpose the target ground states were approx-
imated by simple oscillator determinants in the normal
approach which were projected into the COM rest frame
in the Galilei-invariant description. For the states of the
residual bound system simple one-hole states with respect
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to these determinants (again projected into the COM rest
frame in the invariant description) were taken. For the
continuum nucleon in both approaches a Woods-Saxon
partial-wave expansion was applied with the recoil as usual
being neglected in the normal, but taken into account ex-
actly in the invariant description. Analytic expressions for
the various form factor functions entering the expression
for the longitudinal response have been given explicitly.

The results may be summerized as follows. First of all
there is a shift of the position of the quasi-elastic peak
and a decrease in its width when going from the normal
to the Galilei-invariant description. Roughly, the normal
approach overestimates the most probable energy loss of
the electron by a factor of (1+1/A+1/(A—1)). The 1/A
factor comes from the fact that target and residual states
are not living in their respective COM rest frames if the
normal approach is used. This factor was already obtained
discussing the mathematical sum rules in the second [2] of
the present series of papers. The 1/(A — 1) factor comes
from the neglect of the recoil in the normal approach. It is
absent, if the closure approximation is made as in ref. [2];
however, it occurs if the intermediate scattering states are
constructed explicitly as in the present paper. Obviously
the shift in the peak position as well as the decrease in
the width (here the difference between the normal and the
projected kinetic energies of the target system enters [2])
is a clear 1/A effect. In ¥°Ca the shift amounts to only a
few MeV.

Furthermore, it turned out that restricting the form
factor functions to the spectral-function parts alone
and neglecting the additional terms resulting from non-
orthogonality and some higher-order effects is an excellent
approximation in our simple model, no matter whether the
normal or the projected approach is taken. This allows for
a rather simple correction of the normal results: if in the
normal spectral-function approximation the momentum
transfer is quenched by a factor (A — 1)/A and, further-
more, relative instead of normal wave functions are used
for the various hole states, then the resulting “corrected”
spectral-function approach reproduces the results of the
full Galilei-invariant calculations rather well as long as
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only the “inclusive” response functions (i.e. the sum of the
contributions of all the possible hole states) is considered.

If, on the other hand, the “exclusive” data of partic-
ular hole states are considered, the agreement is worse.
Here, the corrected spectral-function approach still repro-
duces the positions and shapes of the Galilei-invariant re-
sponse functions, underestimates, however, the strengths
obtained for hole states out of the last occupied shell, while
the contributions of the deeper hole states are overesti-
mated considerably. The reason for this behaviour is the
occurence of the spectroscopic factors (2.20) in the pro-
jected approach which are considerably different from the
ones one expects in the normal approximation. Thus, the
different picture obtained in [1] for an uncorrelated system
of nucleons if Galilei invariance is restored with respect to
the usual expectation manifests itself also in the simple
knock-out model considered here.

It is an interesting question whether the above state-
ments do only hold in the simple model considered here
or whether they stay true even if a more microscopic ap-
proach to the scattering problem is used. In the next of the
present series of papers, we shall therefore reinvestigate
the inelastic electron scattering within a coupled-channel
approach using a suitable many-body Hamiltonian to ob-
tain both the bound and the continuum states which are
needed.
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